CICLOS CURTOS DE JEJUM E REALIMENTAÇÃO PARA JUVENIS DE Colossoma macropomum EM TANQUES-REDE

Conteúdo do artigo principal

Renata Franco dos Santos
Joana Paula de Souza Cornélio
Ádria Silva Gomes
Juliana Tomomi Kojima
Hugo Gabriel Guedes de Oliveira
Lucas Pedro Gonçalves Junior

Resumo

São escassos os estudos sobre manejo alimentar, principalmente avaliando a capacidade de ganho compensatório, assim como os efeitos dessa prática nas respostas metabólicas nas diferentes fases e sistema de criação. Assim, objetivou-se avaliar o crescimento, as reservas energéticas e parâmetros hematológicos de juvenis de Colossoma macropomum submetidos a jejum e realimentação cíclicos de curta duração em tanques-rede flutuantes. Foram utilizados 7.560 juvenis de C. macropomum (40,56±10,96g). Os peixes foram distribuídos em seis tanques-rede (3,0m x 3,0m x 2,7m) com densidade de estocagem de 50 peixes/m3. Durante os 60 dias de experimento, os peixes receberam dietas comerciais com 28% de proteína bruta (3–4 mm) duas vezes ao dia (08h00 e 17h00), de acordo com a saciedade aparente. Os peixes foram distribuídos entre os dois tratamentos a seguir com três repetições cada: 1) Controle (alimentado continuamente diariamente); e F1R2, submetido a um dia de jejum seguido de dois dias de realimentação (vinte ciclos de jejum-realimentação). O protocolo F1R2 afetou negativamente as respostas de juvenis de C. macropomum mantidos em produção comercial em sistema de tanque-rede flutuante. O hematócrito, a contagemde glóbulos vermelhos e o volume celular médio permaneceram reduzidos durante o período experimental. Foi observada mobilização do glicogênio hepático e reservas lipídicas dos tecidos adiposo e muscular. C. macropomum conseguiu apresentar ganho compensatório apenas parcial, após os 60 dias de experimento. Os juvenis apresentaram ajuste fisiológico e metabólico ao manejo alimentar cíclico de jejum e realimentação. A estratégia de manejo F1R2 submeteu os peixes em nível de restrição considerado severo na fase inicial de crescimento.

Detalhes do artigo

Como Citar
Franco dos Santos, R. ., Paula de Souza Cornélio, J. ., Silva Gomes, Ádria, Juliana Tomomi Kojima , J. ., Guedes de Oliveira, H. G., Yukihiro Gimbo, R., & Gonçalves Junior, L. P. (2025). CICLOS CURTOS DE JEJUM E REALIMENTAÇÃO PARA JUVENIS DE Colossoma macropomum EM TANQUES-REDE. Igapó, 19(1). https://doi.org/10.31417/irecitecifam.v19.563
Seção
Artigos

Referências

ALBANESI, C.; GONZÁLEZ-CASTRO, M.; LÓPEZ-MAÑANES, A. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. Journal of Comparative Physiology B, v. 192, p.561–573, 2022. DOI: https://doi.org/10.1007/s00360-022-01438-5.

ALI, M.; NICIEZA, A.; WOOTTON, R.J. Compensatory growth in fishes: A response to growth depression. Fish and Fisheries, v.4, n.2, p.147–190, 2003. DOI: https://doi.org/10.1046/j.1467-2979.2003.00120.x.

ASHOURI, G., et al. Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re- feeding. Aquaculture Nutrition, v.26, p.400–409, 2020. DOI: https://doi.org/10.1111/anu.13002.

ASSIS, Y.P.A.S. et al. Feed restriction as a feeding management strategy in Colossoma macropomum juveniles under recirculating aquaculture system (RAS). Aquaculture, v.529, 735689, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735689.

AZEVEDO, T.M.P. et al. Valores de referência dos parâmetros hematológicos de Oreochromis niloticus (Linaeus, 1758) cultivados em tanques-rede em Paulo Afonso, no estado da Bahia, Brasil. Brazilian Journal of Aquatic Science and Technology, v.20, n.2, p.63–74, 2016. DOI: https://doi.org/10.14210/bjast.v20n1.

AVADÍ, A. et al. How to enhance the sustainability and inclusiveness of smallholder aquaculture production systems in Zambia? Aquaculture, v.547, 737494, DOI: https://doi.org/10.1016/j.aquaculture.2021.737494.

BARCELLOS, L.J.G. et al. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture, v.300, p.231– 236, 2010. DOI: https://doi.org/10.1016/j.aquaculture.2010.01.013.

BLASCO, J.; FERNANDEZ, J.; GUTIERREZ, J. Variations in tissue reserves, plasma metabolites and pancreatic hormones during fasting in immature carp (Cyprinus carpio) Comparative Biochemistry and Physiology Part A: Physiology., v.103, p.357–363, 1992. DOI: https://doi.org/10.1016/0300-9629(92)90594-G.

BRAZ, J.M., et al. Compensatory growth of Nile tilapia fingerlings subjected to food restriction and re-feeding at low temperatures. Revista de Ciências Agroveterinárias, v.21, 2022. DOI: https://doi.org/10.5965/223811712142022481.

CARUSO, G. et al. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environmental Research, v.81, p.18-25, 2012. DOI: https://doi.org/10.1016/j.marenvres.2012.07.003.

CHO, S.-H. Effects of Alternate-Week Feeding Strategies on Growth and Feed Efficiency Ratio of Juvenile Nile Tilapia Oreochromis niloticus in a Recirculating System. Fisheries and Aquatic Sciences, v. 8, p.128-131, 2005. DOI: https://doi.org/10.5657/fas.2005.8.3.128.

COSTA, D.P., et al. Food Restriction Programs and Their Applications in Fish Aquaculture. Journal of Agricultural Science and Technology, v.9, p.316-322, 2019. DOI: https://doi.org/10.17265/2161-6264/2019.05.002.

DAVIS, K.B.; GAYLORD, T.G. Effect of fasting on body composition and responses to stress in sunshine bass. Comparative Biochemistry Physiology - A Mol. Int. Physiol. v.158, p.30–36, 2011. DOI: https://doi.org/10.1016/j.cbpa.2010.08.019.

ELBIALY, Z.I. et al. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. Fish Physiology and Biochemistry, v.48, p.973–989, 2022. DOI: https://doi.org/10.1007/s10695-022-01094-0.

FAVERO, G.C., et al. Fasting and refeeding lead to more efficient growth in lean pacu (Piaractus mesopotamicus). Aquaculture Research, v.49, p.359–366, 2018. https://doi.org/10.1111/are.13466.

FAVERO, G.C., et al. A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture, v.524, p.1-7, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735242.

FEIDANTSIS, K. et al. Synergistic effect of long-term feed deprivation and temperature on the cellular physiology of meagre (Argyrosomus regius), Journal of Thermal Biology, v.105, 103207, 2022. DOI: https://doi.org/10.1016/j.jtherbio.2022.103207.

FRANÇOIS, N.R. et al. Compensatory growth response of juvenile Arctic charr (Salvelinus alpinus L. Nauyuk) under various cyclical food restriction and refeeding periods. Aquaculture, v. 563, 73897, 2023. DOI: https://doi.org/10.1016/j.aquaculture.2022.738971.

FURNÉ, M. et al. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v.149, p.420–425, 2008. DOI: https://doi.org/10.1016/j.cbpa.2008.02.002.

FURNÉ, M. et al. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. Journal of Comparative Physiology B, v.182, p.63–76, 2012. https://doi.org/10.1007/s00360-011-0596-9.

GALLARDO-COLLÍ et al. Compensatory growth of Nile tilapia Oreochromis niloticus, L. subjected to cyclic periods of feed restriction and feeding in a biofloc system. Aquaculture Research, v.51, p.1813–1823, 2020. DOI: https://doi.org/10.1111/are.14530.

GAO, Y.; LEE, J. Compensatory Responses of Nile Tilapia Oreochromis niloticus under Different Feed-Deprivation Regimes. Fisheries and Aquatic Science, v.15, p.305–311, 2012. DOI: https://doi.org/10.5657/FAS.2012.0305.

HILSDORF, A.W.S. et al. The farming and husbandry of Colossoma macropomum: From Amazonian waters to sustainable production. Reviews in Aquaculture, v.14, p.993-1027, 2022.DOI: https://doi.org/10.1111/raq.12638.

ITUASSÚ, D.R.; ROBSON, G.; ROUBACH, R. Detidesenvolvimento de tambaqui submo a períodos de privação alimentar. Pesquisa Agropecuária Brasileira, v.39, p.1199-1203, 2004. DOI: https://doi.org/10.1590/S0100-204X2004001200006.

JAFARI, N.; FALAHATKAR, B.; SAJJADI, M.M. The effect of feeding strategies and body weight on growth performance and hematological parameters of Siberian sturgeon (Acipenser baerii, Brandt 1869): Preliminary results. Journal of Applied Ichthyology, v.35, p.289–295, 2019. DOI: https://doi.org/10.1111/jai.13824.

KLAHAN R, et al. Biorefining and biotechnology prospects of low-cost fish feed on Red tilapia production with different feeding regime. Chemosphere, v.311, 137098, 2023. DOI: https://doi.org/10.1016/j.chemosphere.2022.137098.

LI, X. et al. Hepatic Glucose Metabolism and Its Disorders in Fish. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, v.1354, 2023. DOI: https://doi.org/10.1007/978- 3-030-85686-1_11.

METÓN, I.; FERNÁNDEZ, F.; BAANANTE, I.V. Short- and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture, v.225, p.99-107, 2003. DOI: https://doi.org/10.1016/S0044-8486(03)00281-3.

MORALES, A.E. et al. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v.139, p.153–161, 2004. DOI: https://doi.org/10.1016/j.cca.2004.10.008.

MORSHEDI, V. et al. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Animal Feed Science and Technology, v.232, p.207–214, 2017. DOI: https://doi.org/10.1016/j.anifeedsci.2016.10.005.

NEVES, L.C. et al. Physiological and metabolic responses in juvenile Colossoma macropomum exposed to hypoxia. Fish Physiology and Biochemistry, v.46, p.2157– 2167, 2020. DOI: https://doi.org/10.1007/s10695-020-00868-8.

OLIVEIRA, G.R. et al. Economic Analysis of the Use of Restrictive Food Management in the Cultivation of Tilapia (Oreochromis niloticus) in a Recirculation System. Journal of Agricultural Science and Technology, v.12, p. 31-39, 2022. DOI: htttp://doi.org/10.17265/2161- 6264/2022.02.001.

OLIVEIRA, G.R. et al. Restrição alimentar na piscicultura: fisiologia, metabolismo e sustentabilidade. Brazilian Journal of Development, v.6, p.28224-28244, 2020. DOI: http://doi.org/10.34117/bjdv6n5-318.

PEDROZA-FILHO, M.X.; RODRIGUES, A. P. O.; REZENDE, F. P. Dinâmica da produção de tambaqui e demais peixes redondos no Brasil. Boletim Ativos aquicultura, ano 2, 2016. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/141367/1/CNPASA-2015- aa7.pdf.

PEIXE, B. R. Anuário Peixe BR da piscicultura 2023. São Paulo: Associação Brasileira de Piscicultura, 2023.

PÉREZ-JIMÉNEZ, A. et al. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish physiology and biochemistry, v.38, p.1145–1157, 2012. DOI: https://doi.org/10.1007/s10695-011-9600-2.

PY, C.; ELIZONDO-GONZÁLEZ, R.; PEÑA-RODRÍGUEZ, A. Compensatory growth: Fitness cost in farmed fish and crustaceans. Reviews in Aquaculture, v.14, p.1389-1417, 2022. DOI: https://doi.org/10.1111/raq.12656.

REEVE, C.; ROWSEY, L. E.; SPEERS-ROESCH, B. Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes. Journal of Experimental Biology, v.225, jeb243407, 2022. DOI: https://doi.org/10.1242/jeb.243407.

RIOS, F.S. et al. Utilization of endogenous reserves and effects of starvation on the health of Prochilodus lineatus (Prochilodontidae). Environmental Biology of Fishes, v.91, p.87– 94, 2011. DOI: https://doi.org/10.1007/s10641-010-9762-2.

ROSSI, A. et al. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecological Indicators, v.56, p.161–170, 2015. DOI: https://doi.org/10.1016/j.ecolind.2015.04.001.

ŞAHIN, T.; AKBULUT, B.; AKSUNGUR, M. Compensatory growth in sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss). Turk Journal of Zoology, v.24, p. 81–86, 2000. DOI: https://journals.tubitak.gov.tr/zoology/vol24/iss1/9.

SANTOS, E.L. et al. Desempenho de tambaquis (Colossoma macropomum) submetidos a restrição alimentar e a realimentação em tanques-rede. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.70, p.931–938, 2018. DOI: https://doi.org/10.1590/1678-4162-9891.

SHIRVAN, S. et al. Physiological responses to feed restriction and starvation in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869): Effects on growth, body composition and blood plasma metabolites. Aquaculture research, v.51, p.282–291, 2020. DOI: https://doi.org/10.1111/are.14374.

SILVA, W.S., et al. Effects of cyclical short-term fasting and refeeding on juvenile Lophiosilurus alexandri, a carnivorous Neotropical catfish. Aquaculture, v.505, p.12–17, 2019. DOI: https://doi.org/10.1016/j.aquaculture.2019.02.047.

SOENGAS, J.L. et al. Food deprivation and refeeding in Atlantic salmon, Salmo salar: Effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiology and Biochemistry, v.15, p.491–511, 1996. DOI: https://doi.org/10.1007/BF01874923.

SOUZA, V.L. et al. Avaliação do Crescimento e do Custo da Alimentação do Pacu (Piaractus mesopotamicus Holmberg, 1887) Submetido a Ciclos Alternados de Restrição Alimentar e Realimentação. Revista Brasileira de Zoottecnia, v.32, 2003. DOI: https://doi.org/10.1590/S1516-35982003000100003.

TURANO, M.J.; BORSKI, R.J.; DANIELS, H.V. Effects of cyclic feeding on compensatory growth of hybrid striped bass (Morone chrysops x M. saxitilis) foodfish and water quality in production ponds. Aquaculture Research, v.39, p.1514–1523, 2008. DOI: https://doi.org/10.1111/j.1365-2109.2008.02023.x.

URBINATI, E.C.; SARMIENTO, S.J.; TAKAHASHI, L.S. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture, v.433,p.430–433, 2014. DOI: https://doi.org/10.1016/j.aquaculture.2014.06.030.

WANG, C. et al. Effects of cyclical short-term food deprivation and refeeding on compensatory growth and gene expression of SOD, GPX and HSP70 in Schizothorax wangchiachii. Fish & Shellfish Immunology, v.94, p.628–633, 2019. DOI: https://doi.org/10.1016/j.fsi.2019.09.047.

WANG, Y. et al. Compensatory growth in hybrid tilapia, Oreochromis mossambicus x O. niloticus, reared in seawater. Aquaculture, v.189, p.101–108, 2000. DOI: https://doi.org/10.1016/S0044-8486(00)00353-7.

WANG, Y. et al. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L. Aquaculture Research, v.40, p.204– 210, 2009. DOI: https://doi.org/10.1111/j.1365-2109.2008.02083.x.