CICLOS CURTOS DE JEJUM E REALIMENTAÇÃO PARA JUVENIS DE Colossoma macropomum EM TANQUES-REDE
Conteúdo do artigo principal
Resumo
São escassos os estudos sobre manejo alimentar, principalmente avaliando a capacidade de ganho compensatório, assim como os efeitos dessa prática nas respostas metabólicas nas diferentes fases e sistema de criação. Assim, objetivou-se avaliar o crescimento, as reservas energéticas e parâmetros hematológicos de juvenis de Colossoma macropomum submetidos a jejum e realimentação cíclicos de curta duração em tanques-rede flutuantes. Foram utilizados 7.560 juvenis de C. macropomum (40,56±10,96g). Os peixes foram distribuídos em seis tanques-rede (3,0m x 3,0m x 2,7m) com densidade de estocagem de 50 peixes/m3. Durante os 60 dias de experimento, os peixes receberam dietas comerciais com 28% de proteína bruta (3–4 mm) duas vezes ao dia (08h00 e 17h00), de acordo com a saciedade aparente. Os peixes foram distribuídos entre os dois tratamentos a seguir com três repetições cada: 1) Controle (alimentado continuamente diariamente); e F1R2, submetido a um dia de jejum seguido de dois dias de realimentação (vinte ciclos de jejum-realimentação). O protocolo F1R2 afetou negativamente as respostas de juvenis de C. macropomum mantidos em produção comercial em sistema de tanque-rede flutuante. O hematócrito, a contagemde glóbulos vermelhos e o volume celular médio permaneceram reduzidos durante o período experimental. Foi observada mobilização do glicogênio hepático e reservas lipídicas dos tecidos adiposo e muscular. C. macropomum conseguiu apresentar ganho compensatório apenas parcial, após os 60 dias de experimento. Os juvenis apresentaram ajuste fisiológico e metabólico ao manejo alimentar cíclico de jejum e realimentação. A estratégia de manejo F1R2 submeteu os peixes em nível de restrição considerado severo na fase inicial de crescimento.
Detalhes do artigo
Referências
ALBANESI, C.; GONZÁLEZ-CASTRO, M.; LÓPEZ-MAÑANES, A. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. Journal of Comparative Physiology B, v. 192, p.561–573, 2022. DOI: https://doi.org/10.1007/s00360-022-01438-5.
ALI, M.; NICIEZA, A.; WOOTTON, R.J. Compensatory growth in fishes: A response to growth depression. Fish and Fisheries, v.4, n.2, p.147–190, 2003. DOI: https://doi.org/10.1046/j.1467-2979.2003.00120.x.
ASHOURI, G., et al. Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re- feeding. Aquaculture Nutrition, v.26, p.400–409, 2020. DOI: https://doi.org/10.1111/anu.13002.
ASSIS, Y.P.A.S. et al. Feed restriction as a feeding management strategy in Colossoma macropomum juveniles under recirculating aquaculture system (RAS). Aquaculture, v.529, 735689, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735689.
AZEVEDO, T.M.P. et al. Valores de referência dos parâmetros hematológicos de Oreochromis niloticus (Linaeus, 1758) cultivados em tanques-rede em Paulo Afonso, no estado da Bahia, Brasil. Brazilian Journal of Aquatic Science and Technology, v.20, n.2, p.63–74, 2016. DOI: https://doi.org/10.14210/bjast.v20n1.
AVADÍ, A. et al. How to enhance the sustainability and inclusiveness of smallholder aquaculture production systems in Zambia? Aquaculture, v.547, 737494, DOI: https://doi.org/10.1016/j.aquaculture.2021.737494.
BARCELLOS, L.J.G. et al. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture, v.300, p.231– 236, 2010. DOI: https://doi.org/10.1016/j.aquaculture.2010.01.013.
BLASCO, J.; FERNANDEZ, J.; GUTIERREZ, J. Variations in tissue reserves, plasma metabolites and pancreatic hormones during fasting in immature carp (Cyprinus carpio) Comparative Biochemistry and Physiology Part A: Physiology., v.103, p.357–363, 1992. DOI: https://doi.org/10.1016/0300-9629(92)90594-G.
BRAZ, J.M., et al. Compensatory growth of Nile tilapia fingerlings subjected to food restriction and re-feeding at low temperatures. Revista de Ciências Agroveterinárias, v.21, 2022. DOI: https://doi.org/10.5965/223811712142022481.
CARUSO, G. et al. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environmental Research, v.81, p.18-25, 2012. DOI: https://doi.org/10.1016/j.marenvres.2012.07.003.
CHO, S.-H. Effects of Alternate-Week Feeding Strategies on Growth and Feed Efficiency Ratio of Juvenile Nile Tilapia Oreochromis niloticus in a Recirculating System. Fisheries and Aquatic Sciences, v. 8, p.128-131, 2005. DOI: https://doi.org/10.5657/fas.2005.8.3.128.
COSTA, D.P., et al. Food Restriction Programs and Their Applications in Fish Aquaculture. Journal of Agricultural Science and Technology, v.9, p.316-322, 2019. DOI: https://doi.org/10.17265/2161-6264/2019.05.002.
DAVIS, K.B.; GAYLORD, T.G. Effect of fasting on body composition and responses to stress in sunshine bass. Comparative Biochemistry Physiology - A Mol. Int. Physiol. v.158, p.30–36, 2011. DOI: https://doi.org/10.1016/j.cbpa.2010.08.019.
ELBIALY, Z.I. et al. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. Fish Physiology and Biochemistry, v.48, p.973–989, 2022. DOI: https://doi.org/10.1007/s10695-022-01094-0.
FAVERO, G.C., et al. Fasting and refeeding lead to more efficient growth in lean pacu (Piaractus mesopotamicus). Aquaculture Research, v.49, p.359–366, 2018. https://doi.org/10.1111/are.13466.
FAVERO, G.C., et al. A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture, v.524, p.1-7, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735242.
FEIDANTSIS, K. et al. Synergistic effect of long-term feed deprivation and temperature on the cellular physiology of meagre (Argyrosomus regius), Journal of Thermal Biology, v.105, 103207, 2022. DOI: https://doi.org/10.1016/j.jtherbio.2022.103207.
FRANÇOIS, N.R. et al. Compensatory growth response of juvenile Arctic charr (Salvelinus alpinus L. Nauyuk) under various cyclical food restriction and refeeding periods. Aquaculture, v. 563, 73897, 2023. DOI: https://doi.org/10.1016/j.aquaculture.2022.738971.
FURNÉ, M. et al. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v.149, p.420–425, 2008. DOI: https://doi.org/10.1016/j.cbpa.2008.02.002.
FURNÉ, M. et al. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. Journal of Comparative Physiology B, v.182, p.63–76, 2012. https://doi.org/10.1007/s00360-011-0596-9.
GALLARDO-COLLÍ et al. Compensatory growth of Nile tilapia Oreochromis niloticus, L. subjected to cyclic periods of feed restriction and feeding in a biofloc system. Aquaculture Research, v.51, p.1813–1823, 2020. DOI: https://doi.org/10.1111/are.14530.
GAO, Y.; LEE, J. Compensatory Responses of Nile Tilapia Oreochromis niloticus under Different Feed-Deprivation Regimes. Fisheries and Aquatic Science, v.15, p.305–311, 2012. DOI: https://doi.org/10.5657/FAS.2012.0305.
HILSDORF, A.W.S. et al. The farming and husbandry of Colossoma macropomum: From Amazonian waters to sustainable production. Reviews in Aquaculture, v.14, p.993-1027, 2022.DOI: https://doi.org/10.1111/raq.12638.
ITUASSÚ, D.R.; ROBSON, G.; ROUBACH, R. Detidesenvolvimento de tambaqui submo a períodos de privação alimentar. Pesquisa Agropecuária Brasileira, v.39, p.1199-1203, 2004. DOI: https://doi.org/10.1590/S0100-204X2004001200006.
JAFARI, N.; FALAHATKAR, B.; SAJJADI, M.M. The effect of feeding strategies and body weight on growth performance and hematological parameters of Siberian sturgeon (Acipenser baerii, Brandt 1869): Preliminary results. Journal of Applied Ichthyology, v.35, p.289–295, 2019. DOI: https://doi.org/10.1111/jai.13824.
KLAHAN R, et al. Biorefining and biotechnology prospects of low-cost fish feed on Red tilapia production with different feeding regime. Chemosphere, v.311, 137098, 2023. DOI: https://doi.org/10.1016/j.chemosphere.2022.137098.
LI, X. et al. Hepatic Glucose Metabolism and Its Disorders in Fish. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, v.1354, 2023. DOI: https://doi.org/10.1007/978- 3-030-85686-1_11.
METÓN, I.; FERNÁNDEZ, F.; BAANANTE, I.V. Short- and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture, v.225, p.99-107, 2003. DOI: https://doi.org/10.1016/S0044-8486(03)00281-3.
MORALES, A.E. et al. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v.139, p.153–161, 2004. DOI: https://doi.org/10.1016/j.cca.2004.10.008.
MORSHEDI, V. et al. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Animal Feed Science and Technology, v.232, p.207–214, 2017. DOI: https://doi.org/10.1016/j.anifeedsci.2016.10.005.
NEVES, L.C. et al. Physiological and metabolic responses in juvenile Colossoma macropomum exposed to hypoxia. Fish Physiology and Biochemistry, v.46, p.2157– 2167, 2020. DOI: https://doi.org/10.1007/s10695-020-00868-8.
OLIVEIRA, G.R. et al. Economic Analysis of the Use of Restrictive Food Management in the Cultivation of Tilapia (Oreochromis niloticus) in a Recirculation System. Journal of Agricultural Science and Technology, v.12, p. 31-39, 2022. DOI: htttp://doi.org/10.17265/2161- 6264/2022.02.001.
OLIVEIRA, G.R. et al. Restrição alimentar na piscicultura: fisiologia, metabolismo e sustentabilidade. Brazilian Journal of Development, v.6, p.28224-28244, 2020. DOI: http://doi.org/10.34117/bjdv6n5-318.
PEDROZA-FILHO, M.X.; RODRIGUES, A. P. O.; REZENDE, F. P. Dinâmica da produção de tambaqui e demais peixes redondos no Brasil. Boletim Ativos aquicultura, ano 2, 2016. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/141367/1/CNPASA-2015- aa7.pdf.
PEIXE, B. R. Anuário Peixe BR da piscicultura 2023. São Paulo: Associação Brasileira de Piscicultura, 2023.
PÉREZ-JIMÉNEZ, A. et al. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish physiology and biochemistry, v.38, p.1145–1157, 2012. DOI: https://doi.org/10.1007/s10695-011-9600-2.
PY, C.; ELIZONDO-GONZÁLEZ, R.; PEÑA-RODRÍGUEZ, A. Compensatory growth: Fitness cost in farmed fish and crustaceans. Reviews in Aquaculture, v.14, p.1389-1417, 2022. DOI: https://doi.org/10.1111/raq.12656.
REEVE, C.; ROWSEY, L. E.; SPEERS-ROESCH, B. Inactivity and the passive slowing effect of cold on resting metabolism as the primary drivers of energy savings in overwintering fishes. Journal of Experimental Biology, v.225, jeb243407, 2022. DOI: https://doi.org/10.1242/jeb.243407.
RIOS, F.S. et al. Utilization of endogenous reserves and effects of starvation on the health of Prochilodus lineatus (Prochilodontidae). Environmental Biology of Fishes, v.91, p.87– 94, 2011. DOI: https://doi.org/10.1007/s10641-010-9762-2.
ROSSI, A. et al. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecological Indicators, v.56, p.161–170, 2015. DOI: https://doi.org/10.1016/j.ecolind.2015.04.001.
ŞAHIN, T.; AKBULUT, B.; AKSUNGUR, M. Compensatory growth in sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss). Turk Journal of Zoology, v.24, p. 81–86, 2000. DOI: https://journals.tubitak.gov.tr/zoology/vol24/iss1/9.
SANTOS, E.L. et al. Desempenho de tambaquis (Colossoma macropomum) submetidos a restrição alimentar e a realimentação em tanques-rede. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.70, p.931–938, 2018. DOI: https://doi.org/10.1590/1678-4162-9891.
SHIRVAN, S. et al. Physiological responses to feed restriction and starvation in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869): Effects on growth, body composition and blood plasma metabolites. Aquaculture research, v.51, p.282–291, 2020. DOI: https://doi.org/10.1111/are.14374.
SILVA, W.S., et al. Effects of cyclical short-term fasting and refeeding on juvenile Lophiosilurus alexandri, a carnivorous Neotropical catfish. Aquaculture, v.505, p.12–17, 2019. DOI: https://doi.org/10.1016/j.aquaculture.2019.02.047.
SOENGAS, J.L. et al. Food deprivation and refeeding in Atlantic salmon, Salmo salar: Effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiology and Biochemistry, v.15, p.491–511, 1996. DOI: https://doi.org/10.1007/BF01874923.
SOUZA, V.L. et al. Avaliação do Crescimento e do Custo da Alimentação do Pacu (Piaractus mesopotamicus Holmberg, 1887) Submetido a Ciclos Alternados de Restrição Alimentar e Realimentação. Revista Brasileira de Zoottecnia, v.32, 2003. DOI: https://doi.org/10.1590/S1516-35982003000100003.
TURANO, M.J.; BORSKI, R.J.; DANIELS, H.V. Effects of cyclic feeding on compensatory growth of hybrid striped bass (Morone chrysops x M. saxitilis) foodfish and water quality in production ponds. Aquaculture Research, v.39, p.1514–1523, 2008. DOI: https://doi.org/10.1111/j.1365-2109.2008.02023.x.
URBINATI, E.C.; SARMIENTO, S.J.; TAKAHASHI, L.S. Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture, v.433,p.430–433, 2014. DOI: https://doi.org/10.1016/j.aquaculture.2014.06.030.
WANG, C. et al. Effects of cyclical short-term food deprivation and refeeding on compensatory growth and gene expression of SOD, GPX and HSP70 in Schizothorax wangchiachii. Fish & Shellfish Immunology, v.94, p.628–633, 2019. DOI: https://doi.org/10.1016/j.fsi.2019.09.047.
WANG, Y. et al. Compensatory growth in hybrid tilapia, Oreochromis mossambicus x O. niloticus, reared in seawater. Aquaculture, v.189, p.101–108, 2000. DOI: https://doi.org/10.1016/S0044-8486(00)00353-7.
WANG, Y. et al. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L. Aquaculture Research, v.40, p.204– 210, 2009. DOI: https://doi.org/10.1111/j.1365-2109.2008.02083.x.