AVALIAÇÃO DA SUBSTITUIÇÃO PARCIAL DO CIMENTO PORTLAND POR CINZAS DA FOLHA DE BAMBU EM TIJOLOS SOLO-CIMENTO

Conteúdo do artigo principal

Humberto Denys de Almeida Silva
Hitalo de Jesus Bezerra da Silva
Valdeci Bosco dos Santos
José Milton Elias de Matos

Resumo

A fim de contribuir para a sustentabilidade na redução do consumo de cimento o presente artigo investigou a possibilidade da cinzas da folha de bambu (CFB) substituir o cimento em tijolos de solo-cimento. Então propôs-se a utilização da CFB, como substituta parcial do cimento na composição de tijolos de solo-cimento (tijolo ecológico). As CFB’s foram produzidas a temperatura e tempo controlados, sendo caracterizadas por DRX, FRX, FTIR, MEV e atividade pozolânica. Resultados classificam as CFB’s como um material com alto índice pozolânico. Tijolos solo-cimento com substituição do cimento em 0%, 5%, 10%, 15% e 20% pelas CFB’s foram preparados, curados por 7, 14, 28 e 56 dias e caracterizados por absorção de água, resistência à compressão e MEV. Para todos os tempos de cura os resultados de absorção de água e resistência à compressão para todas as amostras, estavam acima do exigido pela norma brasileira. As CFB’s aplicadas a tijolo solo-cimento, portanto, se apresentaram como uma alternativa viável e sustentável, diminuindo o consumo de cimento.

Detalhes do artigo

Como Citar
de Almeida Silva, H. D., de Jesus Bezerra da Silva, H., Bosco dos Santos, V., & Milton Elias de Matos, J. . (2023). AVALIAÇÃO DA SUBSTITUIÇÃO PARCIAL DO CIMENTO PORTLAND POR CINZAS DA FOLHA DE BAMBU EM TIJOLOS SOLO-CIMENTO. Igapó, 17(1). https://doi.org/10.31417/irecitecifam.v17.293
Seção
Artigos

Referências

ABCP, Dosagem das misturas de solo-cimento: normas de dosagem e métodos de ensaios. São Paulo, 2004.

AGOSTINHO, L. B. ALEXANDRE, C. P. DA SILVA, E. F. TOLEDO F. R. D. Rheological study of Portland cement pastes modified with superabsorbent polymer and nanosilica. Journal of Building Engineering. Vol. 34, 2021, pp. 102024.

ALIAS, N. IBRAHIM, N. MOHD, H. K. A. HASBULLAH, H. Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. Malaysian Journal of Analytical Sciences. Vol. 18, n. 3, 2014, 705-710.

ANDREW, R. M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data. Vol. 11, 2019, pp. 1675–1710.

AROOZ, R.F. HALWATURA, R.U. Mud-concrete block (MCB): mix design & durability characteristics. Case Studies in Construction Materials. Vol. 8, 2018, pp. 39 -50.

ASHA, P. SALMAN, A. KUMAR, R.A. Experimental study on concrete with bamboo leaf ash. Int. J. Eng. Adv. Technol. Vol. 3, 2014, pp. 2249-8958.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10833: Fabricação de Tijolo e Bloco de Solo-Cimento utilizando Prensa Manual ou Hidráulica: Procedimento. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10834: Bloco de solo-cimento sem função estrutural: Requisitos. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653: Materiais pozolânicos – Requisitos. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16697: Cimento Portland: Requisitos. Rio de Janeiro, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6459: Solo: Determinação do limite de liquidez. Rio de Janeiro, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7180: Solo: Determinação do limite de plasticidade. Rio de Janeiro, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7181: Solo: Análise granulométrica. Rio de Janeiro, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8491: Tijolo de solo-cimento – Requisitos. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8492: Tijolo de solo-cimento: Análise dimensional, determinação da resistência à compressão e da absorção de água - Método de ensaio. Rio de Janeiro, 2012.

BARBOSA W. PORTELLA K. F. Synthesis and characterization of mineral phases C 3 S, C 2 S, C 3 A and C 4 AF for use in Portland cement. Cerâmica. Vol. 65, 2019, pp. 373.

BASTO, P.A. SAVASTANO, H. NETO, A. A. M. Characterization and pozzolanic properties of sewage sludge ashes (SSA) by electrical conductivity. Cement and Concrete Composites. Vol. 104, 2019, pp. 103410.

BERENGUER, R. A. CAPRARO, A. P. B. MEDEIROS, M. H. F. CARNEIRO, A. M. P. OLIVEIRA, R. A. Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide. Journal of Environmental Chemical Engineering. Vol. 8, n. 2, 2020, pp. 103655.

BEZERRA C.G., ROCHA C.A.A., DE SIQUEIRA I.S., FILHO R.D.T. Feasibility of iron-rich ore tailing as supplementary cementitious material in cement pastes. Construction and Building Materials. Vol. 303, 2021, pp. 124496.

CHANDANA, D.G.G.H. DHINAKARAN, G. Compressive Strength and Durability of Bamboo Leaf Ash Concrete. Jordan Journal of Civil Engineering. Vol. 10, 2016, pp. 279-289.

CHEN J.J. LI B. H NG P. L KWAN A.K.H. Adding granite polishing waste to reduce sand and cement contents and improve performance of mortar. Journal of cleaner production. Vol. 279, 2021, pp. 123653.

CHUSILP N. JATURAPITAKKUL C. KIATTIKOMOL K. Effects of LOI of Ground Bagasse Ash on the Compressive Strength and Sulfate Resistance of Mortars. Construction and Building Materials. Vol. 23, n. 12, 2009, pp. 3523-3531.

CORDEIRO, G. C. LEMOS, M.N. XAVIER, K.V. LIMA, C. P. F. Production of agroindustrial ashes with pozzolanic activity via acid leaching, conjugated burning and ultrafine grinding. Ambiente Construído. Vol. 20, n. 4, 2020, pp. 189-203.

DERAKHSHAN-NEJAD Z. LEE. W. HAN. S. CHOI. J. YUN. S. LEE. G. Effects of soil moisture content on CO2 triggered soil physicochemical properties in a near-surface environment. Journal of Soils and Sediments. Vol. 20, n. 4, 2020, pp. 2107-2120.

ENG-POH, N. JACK-HAO, C. RINO, R. M. OKI, M. TAU, C. L. KA-LUN, W. Hydrothermal synthesis of zeolite a from bamboo leaf biomass and its catalytic activity in cyanoethylation of methanol under autogenic pressure and air conditions. Materials Chemistry and Physics. Vol. 201, n. 1, 2017, pp. 78-85.

FRÍAS, M. SAVASTANO, H. VILLAR, E. ROJAS, M.I.S. SANTOS. S. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cement & Concrete Composites. Vol. 34, 2012, pp. 1019-1023.

GARSIDE, M. Global lead industry - statistics & facts. Statista. 2020. Disponível em: https://www.statista.com/topics/5177/lead/#topicOverview. Acesso em 27 jan. 2023.

GAŠPAROVIČ, L. KOREŇOVÁ, Z. JELEMENSKÝ, L. Kinetic study of wood chips decomposition by TGA. Chemical Papers. Vol. 64, n. 2, 2010, pp. 174-181.

GIANG, D. T. Pheng, L.S. Role of construction in economic development: Review of key concepts in the past 40 years. Habitat International. Vol. 35, n. 1, 2011, pp. 118-125.

GUETTALA A. HOUARI H. MEZGHICHE B. CHEBILI R. Durability of lime stabilized earth blocks. Courrier du Savoir. Vol. 2, n. 2, 2002, pp. 61-66.

HEWLETT, P. C. Lea's Chemistry of Cement and Concrete. 4 ed. .Londres. Elsevier, 2008.

HUANG, L. KRIGSVOLL, G. JOHANSEN, F. LIU, Y. ZHANG, X. Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews. Vol. 81, n. 2, 2018, 1906 - 1916.

KARIYAWASAM, K.K.G.K.D. JAYASINGHE, C. Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials. Vol. 105, 2016, pp. 519 - 527.

KOLAWOLE, J. T. OLUSOLA, K. O. BABAFEMI, A. J. OLALUSI, O. B. Blended cement binders containing bamboo leaf ash and ground clay brick waste for sustainable concrete. Materialia. Vol. 15, 2021, pp. 101045.

LOBOVIKOV, M. PAUDEL, S. PIAZZA, M. REN, H. WU, J. World Bamboo Resources: A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization. Vol. 18, 2007, pp. 73.

LOZANO-LUNAR, A. DUBCHENKO, I. BASHYNSKYI, S. RODERO, A. FERNÁNDEZ, J. M. JIMÉNEZ, J. R. Performance of self-compacting mortars with granite sludge as aggregate. Construction and Building Materials. Vol. 251, 2020, pp. 118998.

LUXÁN, M.P. MADRUGA, F. SAAVEDRA, J. Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cement and Concrete Research. Vol. 19, n. 1, 1989, pp. 63- 68.

MARTINEZ-RAMIREZ, S. BLANCO-VARELA, M.T. ERENA, I. GENER, M. Pozzolanic reactivity of zeolitic rocks from two different Cuban deposits: Characterization of reaction products. Appl Clay Sci. Vol. 32, 2006, pp. 40-52.

MASKELL, D. HEATH, A. WALKER, P. Appropriate structural unfired earth masonry units', Proceedings of the Institution of Civil Engineers. Construction Materials. Vol. 169, 2016, pp. 261-270.

MORAES M.J.B. MORAES J.C.B. TASHIMA M.M. AKASAKI J.L. SORIANO L. BORRACHERO M.V. PAYÁ J. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials. Vol. 208, 2019, pp. 369-380.

MORAES, M.J.B. MORAES, J.C.B. TASHIMA, M.M. A. SORIANO, J.L. BORRACHERO, L. PAYÁ, M.V. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials. Vol. 208, 2019, pp. 369-380.

MORALES, E. V. VILLAR-COCIÑA, E. FRÍAS, M. SANTOS, S. F. SAVASTANO, H. Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cement & Concrete Composites. Vol. 31, n. 1, 2009, pp. 22-28.

NASCIMENTO, E. S. S. SOUZA, P. C. OLIVEIRA, H. A. MELO JÚNIOR, M. M. ALMEIDA, V. G. O. MELO, F. M. C. Soil-cement brick with granite cutting residue reuse. Journal of Cleaner Production. Vol. 321, 2021, pp. 129002.

OKOKPUJIEA, I. P. AKINLABI, E.T. FAYOMI, O.O. Assessing the policy issues relating to the use of bamboo in the construction industry in Nigeria Elsevier Enhanced Reader. Heliyon, vol. 6, n. 5, 2020, E04042.

PORTLAND CEMENT ASSOCIATION (PCA). Soil-cement Information. Washington, 2003.

REDDY B. V. V. KUMAR P. P. Cement stabilised rammed earth. Part B: compressive strength and stress–strain characteristics. Materials and Structures. Vol. 44, n. 3, 2011, pp. 695 – 707.

REGO, R. R. C. Estudo do tijolo solo cimento em formulações com a adição da cal. Dissertação (Mestrado em Engenharia dos Materiais), IFPI, 2019.

RIBEIRO, S. V. Reuse of Wood Ash Waste in the Production of Soil-Cement Brick: Formulation, Properties and Microstructure. Dissertação em Engenharia Civil. Universidade Estadual do Norte Fluminense. Rio de Janeiro, 2017.

ROCHA J. H. A. ROSAS M. H. CHILENO N. G. C. TAPIA G. S. C. Physical-mechanical assessment for soil-cement blocks including rice husk ash. Case Studies in Construction Materials. Vol. 14, 2021, pp. e00548.

RODIER L. BILBA K. ONEÂSIPPE C. ARSÈNE M.A. Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement. Journal of Materials and Structures. Vol. 87, 2017, pp. 58.

RODIER, L. VILLAR-COCIÑA, E. BALLESTEROS, J.M. JUNIOR, H.S. Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. Journal of Cleaner Production. Vol. 231, 2019, pp. 54-63.

SEKHAR D. C. NAYAK S. SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. International Journal of Geotechnical Engineering. Vol. 13, n. 6, 2017, pp. 615-629.

SEKHAR D. NAYAK S. Utilization of Granulated Blast Furnace Slag and Cement in the Manufacture of Compressed Stabilized Earth Blocks. Construction and Building Materials. Vol. 166, 2018, pp. 531–536.

SILVA, L. H. P. TAMASHIRO, J.R. PAIVA, F.F.G SANTOS, L.F. TEIXEIRA, S.R. KINOSHITA, A. ANTUNES, P. A. Bamboo leaf ash for use as mineral addition with Portland cement. Journal of Building Engineering. Vol. 42, 2021, pp. 102769.

SIQUEIRA, F. B. HOLANDA J. N. F. Reuse of grits waste for the production of soil-cement bricks. Journal of Environmental Management. Vol. 131, 2013, pp. 1-6.

TAYLOR, H. F. W. Cement Chemistry. London: Thomas Telford, 1997.

TRIPURA D. D. SINGH K. D. Characteristic properties of cement-stabilized rammed earth blocks. Journal of Materials in Civil Engineering. Vol. 27, n. 7, 2015, pp. 04014214 .

UMOH, A.A. ODESOLA, I. A. Characteristics of bamboo leaf ash blended cement paste and mortar. Civil Engineering Dimension. Vol. 17, n. 1, 2015, pp. 22-28.

UTODIO, N. F. EKANDEM, E. S. EGEGE, C. C. OCHOLI, M. ATAKPU, O. D. NWAIGWE, D. N. Investigation of the effect of bamboo leaf ash blended cement on engineering properties of lateritic blocks. Journal of Sustainable Development Studies. Vol. 8, 2015, n. 1, pp. 193-208.

VILELA, A. P. EUGÊNIO, T. M. C. OLIVEIRA, F. F. MENDES, J. F. RIBEIRO, A. G. C. VAZ, L. E. V. S. B. MENDES, R. F. Technological properties of soil-cement bricks produced with iron ore mining waste. Construction and Building Materials. Vol. 262, 2020, pp. 120883.

VILLAR-COCIÑA, E. MORALES, E. V. GONZÁLES, R. R. RUÍZ, J. H. Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model. Cement and Concrete Research. Vol. 33, n. 4, 2003, pp. 517-524.

VILLAR-COCIÑA, E. MORALES, E. V. SANTOS, S. F. SAVASTANO, H. FRÍAS, M. Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cement & Concrete Composites. Vol. 33, n. 1, 2011, pp. 68-73.

VILLAR-COCIÑA, E. SAVASTANO, H. RODIER, L. LEFRAN, M. FRÍAS, M. Pozzolanic characterization of cuban bamboo leaf ash: calcining temperature and kinetic parameters. Waste Biomass Valor. Vol. 9, 2018, pp. 691–699.

XU F. WANG S.L. LI T. LIU B. LI B.B. ZHOU Y. The mechanical properties of tailing recycled aggregate concrete and its resistance to the coupled deterioration of sulfate attack and wetting-drying cycles. Structures. Vol. 27 , 2020, pp. 2208-2216.